information update

A Huge Cloud of Invisible Particles Seems to be Missing From The Milky Way

A Hubble Space Telescope image shows the Lagoon Nebula, part of the small portion of matter in the Milky Way that isn’t made of dark matter.

The Milky Way may be missing a strange X-ray glow long associated with dark matter in other galaxies, a new study has found. If this glowing halo is really missing — and physicists not involved in the study are highly skeptical it’s truly absent — it would deal a blow to the theory that dark matter is made up of hypothetical “sterile neutrinos.” Sterile neutrinos are theoretical ghostly cousins of the faint subatomic neutrinos scientists have already discovered, and may or may not exist.

The researchers of the new study, which was published March 27 in the journal science, looked for this glowing halo in a slightly different way from past attempts, something that is the biggest point of contention among other physicists.

“From a science perspective, I think the fact that we’re getting a lot of pushback — and a lot of interest — in our work, is the way that science should be operating,” said study co-author Nicholas Rodd, a University of California, Berkeley astrophysicist. “People have been thinking about how to search for these neutrinos with X-rays for some time. We came in and really had a new idea of how to look for them. And any time someone comes in and says, ‘I have a new idea for how to look for something that’s different from what you are doing,’ your gut instinct should be skepticism. I think it is totally the natural response.”

Finding the invisible

What’s energy resolution got to do with it?

Dark matter is the biggest unknown in the universe. Scientists know it’s there, primarily because they can see the effects of its Gravity in galaxies; the known stars and gases aren’t nearly heavy enough to bind galaxies together. So, astrophysicists believe that galaxies have unseen “halos” of dark matter providing the missing bulk, and collectively account for 85% of the mass of the universe. (There are other sorts of evidence for dark matter out there, but this is the big one.) They don’t, however, know what this mystery matter is made of.

Ancient Impact Crater Found

Some theories involve relatively heavy speculative particles, called WIMPS. Others involve ultralight particles called axions. There are even exotic, not-widely-accepted theories that rely on the existence of tiny black holes. But the one that is simplest, in certain respects, involves just slightly tweaking physicists’ model of neutrinos — the ultra-light particles that stream through space, interacting only very weakly with other particles. Right now, there are three known kinds of neutrinos: electron neutrinos, muon neutrinos and tau neutrinos. But some particle physicists suspect that there’s a fourth variety: the sterile neutrino. This heavier neutrino wouldn’t interact with other particles at all, except through gravity and when it decays. And because of its added bulk, it doesn’t move through space quite as speedily as other neutrinos. That means that sterile neutrinos don’t fly apart from each other but form clouds, suggesting that they might be able to form halos like dark matter does.

There’s one important difference between sterile neutrinos and other dark matter candidates: Over time, sterile neutrinos decay into particles we know about, including X-ray photons. Researchers in the 1990s and early 2000s suggested that decaying halos of sterile neutrinos would produce a faint glow at a particular wavelength on the X-ray spectrum. And in 2014, adding together X-ray light detected from 73 different galaxy clusters, a team of Harvard researchers seemed to find such a glow right in the expected range: a faint spike of X-ray light at an energy level of 3.5 kilo-electron volts (keV is a measure of the energy level of the particles producing the light).

Science Reviews How Prebiotics improve brain health

Dozens of follow-up studies have since detected similar 3.5 keV glows (referred to as the 3.5 keV line) in other groups of galaxies, though at least some searches for the line — particularly in the Draco galaxy — have turned up empty.

But the researchers of the new  paper argue that the 3.5 keV line is missing from the brightest, closest dark matter source of all: our home galaxy. A team from the University of Michigan, UC Berkeley, and the Lawrence Berkeley National Laboratory went through old X-ray telescope recordings and picked out X-ray images of “blank sky” — regions of the Milky Way that have no stars but should still host dark matter.

Their large dataset should have included a 3.5 keV line if that line is really a dark matter signal, they argued. The team is relatively certain the Milky Way has dark matter. And it’s so close and covers so much of our sky that the dark matter should definitely show up in their data if it’s, they wrote — for the same reason that it’s much easier to spot a large lightbulb in your bedroom than a tiny LED miles away. This strongly suggests, they argued, that the 3.5 keV line is not a dark matter signal, which would be a major blow for the sterile neutrino theory.

Hawaiian Islands Won't Suffocate in the Ocean for Many Years. Here's The reason.

The new study relies on a lot of data — a cumulative 8,300 hours of telescope observation time — but that data comes from a very narrow range of frequencies: between 3.3 and 3.8 keV. And the “energy resolution” of the data is about 0.1 keV, meaning that the researchers can clearly distinguish only a handful of frequencies in their dataset. Their dataset is a bit like a 5-pixel-wide photograph taken with a super-precise camera: The quality of the image is very good, but it doesn’t show much.

The authors of the paper say that’s fine. Even though the image has a low energy resolution, the 3.5 keV line should still show up clearly right in the middle of it. And because it doesn’t, that suggests the line is not in the Milky Way at all, they contend.

A figure from the paper compares the X-ray levels the researchers found (black crosses) to the X-rays they would have expected to find if the 3.5 keV line were present (red dashes).

“Because we are not X-ray astronomers by training, we brought in statistical methods that are used in other fields, and we think are more rigorous and robust,” Rodd said.

Those methods, which are drawn from gamma-ray astronomy and certain kinds of particle physics practiced at the Large Hadron Collider in Europe, appeal to the authors of the paper. But X-ray astronomers are more skeptical.

The Moon: Our Planet's Constant Companion

Abazajian said that using such a narrow energy range amounts to “cherry picking” the data which can lead to an untrustworthy result.

The problem, he said, is that if the line is present, it wouldn’t look like a bright spot against a dark background. Instead, there’s lots of background X-ray light — from other galaxies, from atoms scattered across the sky, and even a little bit from cosmic rays that cause X-ray flickers inside the telescope itself — that you have to deeply understand and carefully subtract out of the data before a noticeable line appears.

In particular, he said, three other X-ray sources fall within the narrow band that the researchers studied: atoms of argon-18 and sulpur-16 in the sky, and then another source that might come from inside the telescopes known as potassium-k. But the broader problem, he said, is that by studying such a narrow frequency range, the researchers just can’t understand the background well enough to properly subtract it out.

Rodd had the opposite take: that accounting for too much of the X-ray spectrum means including features that aren’t relevant the 3.5 keV line, and that might distort your model of what the background X-ray radiation of the Milky Way looks like. That makes it difficult to properly disentangle the 3.5 keV line from the background, he argued.

Subscribe to our newsletter
Sign up here to get the latest news, updates and special offers delivered directly to your inbox.

Leave A Reply

Your email address will not be published.